Category Archives: Climate Change

How Rising CO2 Levels May Contribute to Die-Off of Bees

Specimens of goldenrod sewn into archival paper folders are stacked floor to ceiling inside metal cabinets at the Smithsonian National Museum of Natural History. The collection, housed in the herbarium, dates back to 1842 and is among five million historical records of plants from around the world cataloged there. Researchers turned to this collection of goldenrod — a widely distributed perennial plant that blooms across North America from summer to late fall — to study concentrations of protein in goldenrod pollen because it is a key late-season food source for bees.

SteveBurt/Flickr Honeybees feed on goldenrod flowers.

The newer samples look much like the older generations. But scientists testing the pollen content from goldenrod collected between 1842 and 2014, when atmospheric concentrations of carbon dioxide rose from about 280 parts per million to 398 ppm, found the most recent pollen samples contained 30 percent less protein. The greatest drop in protein occurred from 1960 to 2014, when the amount of carbon dioxide in the atmosphere rose dramatically. A field experiment in the same study that exposed goldenrod to CO2 levels ranging from 280 to 500 ppm showed similar protein decreases.

Read the full article originally posted in Yale Environment 360

A River Runs Again: Reporting on India’s Natural Crisis

  • November 17, 2015 By
    Broken Landscape River
    The world’s second most populous country – projected to be first by 2022 – is developing faster than ever before, roiling the social, political, and environmental landscape. [Video Below]

     

    In her new book, A River Runs Again: India’s Natural World in Crisis, From the Barren Cliffs of Rajasthan to the Farmlands of Karnataka, environmental journalist Meera Subramanian chronicles India’s efforts to balance economic development and environmental protection, including innovative programs to educate youth about sexual and reproductive health.

    Subramanian was inspired by the five elements – earth, fire, water, air, and ether – to investigate five aspects of sustainable development: organic farming, clean cookstoves, freshwater, endangered species, and population and family planning. Traveling throughout the subcontinent, she found stories of “ordinary people and microenterprises determined to revive India’s ravaged natural world.”

    At  the Wilson Center book launch on October 13, Subramanian was joined by freelance journalists Priyali Sur and Lisa Palmer, who offered comments on the book based on their own reporting from India on the interconnections between climate change, food security, and gender.

    Sur, a former television reporter for CNN-IBN, has covered the spike in human trafficking spurred by extreme flooding in the northeastern state of Assam. “Vulnerability that arises from looking for livelihood options, wanting to get work, wanting to sustain the family and wanting to provide for the family, which I think is a [bigger] responsibility for the woman than the man, makes them more vulnerable, and traffickers recognize this,” she said.

    Palmer, a former Wilson Center fellow and current fellow at the National Socio-Environmental Synthesis Center in Annapolis, Maryland, discussed the technological revolution taking root in Indian agriculture. Some organizations, like the Consultative Group for International Agricultural Research, are supporting “climate-smart villages” in India, which use solar energy pumps and sensors to measure crop health and reduce water consumption. The organization aims to create 1,000 climate smart villages across six states including the grain baskets of Haryana and Punjab, said Palmer.

    Read the full article originally published in The New Security Beat by the Wilson Center

India’s climate tech revolution is starting in its villages

Camels pulling wooden carts loaded with coconuts plod down the main road amid speeding motorcycles, buses, rickshaws and cars. Farmers sit atop slow-moving oxcarts loaded with grasses and other cattle feed. In this region of central Gujarat, India, it appears that rural life has not changed for decades.

But drive down a dirt road outside the village of Thamna, about an hour north of Anand, and the 21st century comes into view. Solar panels drive a water pump that irrigates the fields of farmer Raman Bhai Parmar, 65, who grows bananas, rice and wheat on seven acres of land.

Raman Bhai Parmar
Raman Bhai Parmar. Photograph: Lisa Palmer

Parmar’s solar energy pump is one of the technologies being promoted by a new project designed to help rural Indians adapt to climate change. The project, run by the international NGO, the Consultative Group for International Agriculture Research programme on climate change, agriculture and food security (CCAFS), aims to create 1,000 so-called climate smart villages across six Indian states including Haryana, Punjab and Gujarat.

Haryana and Punjab are known as the grain basket states of India, producing the majority of the country’s staple wheat and basmati rice for export to the Middle East and European markets. The pumping of groundwater for irrigation over the past thirty years has led to a spike in productivity and increased food security.

However, the region faces increases in temperature up to 5C by 2080 and wheat is particularly vulnerable to heat stress. A recent study by the Indian Agricultural Research Institute indicates that climate change may reduce wheat yields in India between 6% and 23% by 2050. Environmental problems such as depleting groundwater and variable rains – delayed monsoons and intense rainfall – limit yields. Indian farmers also typically use almost twice the amount of fertiliser needed, damaging soil, contaminating groundwater and adding to greenhouse gas emissions.

Read the full article originally published in The Guardian.

Can Ecologists and Engineers Work Together to Harness Water For The Future?

1024px-Pangani_River1The Pangani River in Tanzania is important for many reasons: its three major dams provide 17 percent of the country’s electricity; it sustains thousands of farmers and herders living in the basin; and its flow of fresh water supports humans, industry, and ecosystems. But most interesting might be the innovative water policies that govern withdrawals, infrastructure projects, and ecosystems along its banks.

Climate change and population dynamics could cause trouble for the Pangani Basin and many others like it. More people are expected to depend on the flow of fresh water while at the same time rainfall and glacial meltwater from Mt. Meru, Mt. Pare, and Mt. Kilimanjaro are diminishing.

800px-Panganirivermap

Around the world, water managers are adjusting to a similar quandary. Precipitation patterns and river flows are becoming more uncertain as the past is no longer a reliable guide for the future. Planners are adjusting to changes in the water cycle by integrating policies with flexible structures and ecosystems.

Flexibility Over Scale

In the November 2014 issue of Nature Climate Change, I wrote about how leaders in sustainable water management are finding common ground with two historically antagonistic approaches: engineering and ecology.

I talked with Mark Fletcher, a water engineer and the water business leader at UK-based Arup, a global company of consulting engineers with 14,000 employees. Modular is one way to describe his brand of sustainable water work.

“We had assumed that the world was static,” Fletcher told me. “We knew that the climate was predictable. Due to climate change or due to a changing climate, it is harder to predict things. So rather than build overly conservative monolithic solutions, we now design systems that can be tweaked and twiddled.”

A good example is osmosis desalination. “You literally stack desalination units, much like you would batteries, until you solve your problem,” he said.

From Fletcher’s perspective, the world has no need for more Hoover Dams, given the uncertainty around the global water cycle of the future. I write:

Fletcher favors natural solutions. In New York City, for example, new plans for city orchards and 9,000 grassed bio-swales, which resemble marshy depressions in the land, will slow the flow of storm water from sidewalks to water catchment basins. “Think of them as green sponges all over the city. The water gets soaked up and you avoid pumping every time it rains,” he says. “It’s the gift that keeps on giving.” Furthermore, rather than design water treatment plants that can accommodate extreme rainfall, he prefers multiple local responses that can be changed and adapted, much in the way that a Lego building block is removed and added.

Fletcher suggests that the solution to water management under climate change is beyond engineering. That’s why ecologists John Matthews, coordinator of the Alliance for Global Water Adaptation, and LeRoy Poff, a professor at Colorado State University, have been leading a team of 27 researchers at the U.S. National Socio-Environmental Synthesis Center in Maryland. The team includes economists, hydrologists, policymakers, and engineers. Climate change, they say, has prompted the researchers to work together on an integrated approach to freshwater adaptation. Rather than isolating water management issues within a single field, such as engineering or hydrology, the team’s multifaceted work is developing solutions for decision-makers. Think of their combined work as a chemical reaction. Instead of one element, such as engineering, working in seclusion on a freshwater adaptation project, their form of synthesis science means suddenly more ingredients are added to the beaker.

The research team that Matthews and Poff lead identifies markers of resilience of both infrastructure and ecosystems in basins. They are using the analysis so that ecological principles are incorporated into future water management projects from the very beginning.

Resilience markers include variation of flow, seasonal and temperature changes, and connections to flood plains, for instance. The specific indicators vary from river to river, but the principles remain the same.

Matthews says that the Dujiangyan system in China’s Sichuan Province is a model for integrating policies with engineering and ecology in a sustainable way. Built in 256 BC, the water diversion system still operates today.

According to Kathleen Dominique, an environmental economist at OECD, flexible approaches are necessary to adjust to changing conditions at low cost.

For the Pangani Basin, leaders have established ecosystems as a priority, keeping river flow available to wetlands, riparian forests, and mangroves, and the plan is to adjust water policies with the changing needs of communities. Similarly, the European Union’s water directive is now adjusted every six years to examine all changes and uses of rivers, not only those related to climate change.

For a deeper look at how people are working to become more resilient, improve water security, and preserve ecosystems by incorporating ecological principles into water management, read the complete article in Nature Climate Change.

Pangani_Town 

Ocean Acidification Poses Risks to Coastal Economies

Oysters, scallops and clams … they’re an iconic part of American cuisine and a critical source of jobs in many coastal communities. But the nation’s approximately one billion dollar shelled mollusk industry is at risk.

When cars, factories, and power plants emit carbon dioxide into the atmosphere, some of the pollution gets absorbed by the oceans – increasing their acidity and making it hard for mollusks to build their shells.

According to a new report, the problem has economic consequences for coastal communities – from Maine to the Chesapeake Bay, and from the Louisiana Bayou to the Pacific Northwest.

Continue reading and listening at Yale Climate Connections.

Associated SESYNC Researcher(s):

Hot, Hungry Planet will be a book!

I’m happy to report that my book, Hot, Hungry Planet, will be published by Palgrave Macmillan. Look for it in Fall 2016. The contract is signed. Let the writing commence!

640px-Field_Hulah_Valley.jpg

Hot, Hungry Planet is a narrative about the people attempting to reconcile the threat of climate change with the need to feed a growing world population. In Hot, Hungry Planet, I take readers on a global journey that explores the human story behind complex, hot-button issues of food security, social justice, climate change, and the environment. I started to post some of my food/ag/environment-related stories on this blog, https://www.hothungryplanet.com, and you will find more original reporting here in the weeks and months to come. 

Agricultural Movement Tackles Challenges of a Warming World

 

Cristo Perez, an agronomist at Fedearroz — the Colombian rice growers association — selects rice plants at La Victoria research center in the Cordoba region of northern Colombia. Fedearroz is working with a variety of Colombian and international organizations to develop so-called "climate-smart" agricultural techniques that protect farmers from the effects of global warming and improve crop yields, while also limiting greenhouse gas emissions. (Photo credit: EITAN ABRAMOVICH/AFP/Getty Images)
Cristo Perez, an agronomist at Fedearroz — the Colombian rice growers association — selects rice plants at La Victoria research center in the Cordoba region of northern Colombia. Fedearroz is working with a variety of Colombian and international organizations to develop so-called “climate-smart” agricultural techniques that protect farmers from the effects of global warming and improve crop yields, while also limiting greenhouse gas emissions. (Photo credit: EITAN ABRAMOVICH/AFP/Getty Images)

By Lisa Palmer

The original version of this article appeared on Yale Environment 360.

Rice is a thirsty crop. Yet for the past three years, Alberto Mejia has been trying to reduce the amount of water he uses for irrigation on his 1,100-acre farm near Ibague in the tropical, central range of the Colombian Andes.

He now plants new kinds of rice that require less water. He floods his paddies with greater precision and has installed gauges that measure the moisture content of the soil. On a daily basis he can determine how much nitrogen the plants need, and he relies on more advanced weather forecasting to plan when to fertilize, water, and harvest the grain.

“We are learning how to manage the crops in terms of water, which will be a very, very good help for us now and in the future,” Mejia says, adding that the current El Niño weather pattern has caused serious drought. “We have very difficult days — hot, with no rain. It’s dry. There are fires in the mountains … Growing crops makes it a complicated time here.”

Ever since a drought devastated his yields five years ago, Mejia has been eager to integrate sweeping changes into his rice production. He believes that the weather has become more erratic and is concerned that future climate change will make rice farming even more difficult. As a result, and with the help of his local rice growers association and scientists from the International Center for Tropical Agriculture, he is embracing what has come to be known as “climate-smart agriculture.” These are agricultural techniques that protect farmers from the effects of global warming and improve crop yields, while also limiting greenhouse gas emissions.

For complete article, please see Yale e360.

At the International Center for Tropical Agriculture in Colombia, researchers measure the greenhouse gas emissions of rice production. One of the goals of so-called "climate-smart agriculture" is to reduce greenhouse gas emissions from practices such as flooding rice fields, which increases the release of methane. The climate-smart agricultural movement also aims to strengthen global food security, improve resilience to climate change, and help 500 million small farmers adapt to more stressful growing conditions. (Photo credit: Neil Palmer/CIAT)
At the International Center for Tropical Agriculture in Colombia, researchers measure the greenhouse gas emissions of rice production. One of the goals of so-called “climate-smart agriculture” is to reduce greenhouse gas emissions from practices such as flooding rice fields, which increases the release of methane. The climate-smart agricultural movement also aims to strengthen global food security, improve resilience to climate change, and help 500 million small farmers adapt to more stressful growing conditions. (Photo credit: Neil Palmer/CIAT)

 

Hi, honey. I’m home. What did you print for dinner?

Technology on the Menu 256px-FoodMeat

By Lisa Palmer

A few weeks ago I attended a panel discussion at the Council on Foreign Relations in Washington, D.C. about food technology of the future. Much of the discussion centered on the production of meat. That’s because Andras Forgacs was on the panel. Forgacs is the CEO of Modern Meadow, a Brooklyn-based, venture-funded company that uses tissue engineering to develop meat and leather in a laboratory setting. Using a 3D printer, the meat is bioprinted onto pectin, the leading ingredient in making jam, and then grown in a sterile vat. It’s a method of beef production from the cells of healthy cow, and it is opening eyes. I wrote about the cutting edge of meat alternatives and cultured meat last May. You can read the story here.

Since becoming a public policy scholar at The Wilson Center in July, I have focused my research and writing on sustainable food production. I’ve written extensively on food technology, beef production, and the search for how to produce more protein for the world’s growing population without using too much water, destroying forests, or depleting ocean fish stocks. So I perked up when heard about the resource conservation methods of Modern Meadow and the potential for printed meat.

Raising animals for food contributes to climate change through the emissions of greenhouse gases and the destruction of forests and grasslands to grow the grain they eat. It also consumes a lot of water. Today it’s a bothersome problem, but it’s increasingly becoming a serious one. Beef production is a driver of global change and the problem will likely get much worse very soon, given the expected growth in the world’s population and demand for meat protein.

You can read about bioprinting and 3D printing of food in my article for FutureFood2050. For the piece, I talked with Hod Lipson, director of Cornell University’s Creative Machines Lab, whose team created the first food 3-D printer about a decade ago. “What food printing offers is a way to combine information technology software and biometrics with cooking in a way that was never possible before,” Lipson told me.

From Lipson’s perspective, 3-D printing is in its infancy and food printing is in the gestational stage. But a handful of companies like Modern Meadow are printing meat (though it’s not yet available to consumers) while others are producing commercially available machines that can print food. I write:

In the future, Lipson anticipates that sophisticated 3-D printing will offer home cooks the ultimate control over the ingredients that go into their food without giving up the convenience of manufactured products.

Here’s the complete story: http://futurefood2050.com/3-d-printers-hit-home/

Lisa Palmer appointed public policy scholar

Lisa PalmerIn July, Lisa Palmer was appointed public policy scholar at the Woodrow Wilson Center in Washington, D.C. She is conducting independent research and reporting on food, agriculture, the environment, and population. Her Wilson Center project, “Feeding a Hot and Hungry Planet,” will examine agriculture, population and climate change, with special emphasis on solutions-oriented perspectives across disciplines.

The Woodrow Wilson International Center for Scholars is the national, living memorial honoring President Woodrow Wilson. The Wilson Center provides a strictly nonpartisan space for the worlds of policymaking and scholarship to interact. By conducting relevant and timely research and promoting dialogue from all perspectives, it works to address the critical current and emerging challenges confronting the United States and the world. Created by an Act of Congress in 1968, The Wilson Center is headquartered in Washington, D.C. and supported by both public and private funds.

 

Famine Is a Feminist Issue

In 2013 the United Nations Population Division revised its population projections to show that population could grow even faster than previously anticipated, especially in Africa. Planning ahead for feeding a hot, hungry, teeming planet is both a numbers game and social venture. Calories, climate change, and acres of land are some of the factors on one side of the equation. The 7 billion people in the world, projected to grow to 9.6 billion by 2050, are on the other.

Continue reading Famine Is a Feminist Issue